Yanqing Deng 1,2Dongning Yue 1,2Mufei Luo 1,2Xu Zhao 1,2[ ... ]Jie Zhang 1,2
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
The influence of second-order dispersion (SOD) on stimulated Raman scattering (SRS) in the interaction of an ultrashort intense laser with plasma was investigated. More significant backward SRS was observed with the increase of the absolute value of SOD ($\mid \kern-1pt\!{\psi}_2\!\kern-1pt\mid$). The integrated intensity of the scattered light is positively correlated to the driver laser pulse duration. Accompanied by the side SRS, filaments with different angles along the laser propagation direction were observed in the transverse shadowgraph. A model incorporating Landau damping and above-threshold ionization was developed to explain the SOD-dependent angular distribution of the filaments.
second-order dispersion stimulated Raman scattering ultrashort intense laser 
High Power Laser Science and Engineering
2022, 10(6): 06000e39
Author Affiliations
Abstract
High Power Laser Science and Engineering
2022, 10(2): 02000e17
Fuyuan Wu 1,2Xiaohu Yang 2,3Yanyun Ma 2,3Qi Zhang 1,2[ ... ]Jie Zhang 1,2,*
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (MOE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai200240, China
3 Department of Physics, National University of Defense Technology, Changsha410073, China
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
5 Department of Astronomy, Beijing Normal University, Beijing100875, China
6 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei230026, China
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
double-cone ignition genetic algorithm pulse optimization random forest 
High Power Laser Science and Engineering
2022, 10(2): 02000e12
Author Affiliations
Abstract
1 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang, Sichuan Province 621900, China
2 Institute of Applied Physics and Computational Mathematics, Beijing 100871, China
3 Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
4 School of Physics, Peking University, Beijing 100871, China
5 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
The results of a commissioning experiment on the SILEX-Ⅱ laser facility (formerly known as CAEP-PW) are reported. SILEX-Ⅱ is a complete optical parametric chirped-pulse amplification laser facility. The peak power reached about 1 PW in a 30 fs pulse duration during the experiment. The laser contrast was better than 1010 at 20 ps ahead of the main pulse. In the basic laser foil target interaction, a set of experimental data were collected, including spatially resolved x-ray emission, the image of the coherent transition radiation, the harmonic spectra in the direction of reflection, the energy spectra and beam profile of accelerated protons, hot-electron spectra, and transmitted laser energy fraction and spatial distribution. The experimental results show that the laser intensity reached 5 × 1020 W/cm2 within a 5.8 µm focus (FWHM). Significant laser transmission did not occur when the thickness of the CH foil was equal to or greater than 50 nm. The maximum energy of the accelerated protons in the target normal direction was roughly unchanged when the target thickness varied between 50 nm and 15 µm. The maximum proton energy via the target normal sheath field acceleration mechanism was about 21 MeV. We expect the on-target laser intensity to reach 1022 W/cm2 in the near future, after optimization of the laser focus and upgrade of the laser power to 3 PW.
Matter and Radiation at Extremes
2021, 6(6): 064401
作者单位
摘要
1 上海交通大学 物理与天文学院协同创新中心 激光等离子体教育部重点实验室,上海 200240
2 中国科学院 高能物理研究所,北京 100080
3 中国科学院大学,北京 100049
电子束在基础科学研究、工农业生产和医疗领域发挥了重要作用。提出了一种新型的电子源技术方案:高功率激光脉冲轰击金属丝靶,可以产生大量能量在百keV量级的热电子,一部分热电子在丝靶表面自生电磁场的作用下沿着丝靶运动,丝靶后方可以获得指向性良好的电子束。实验上成功在金、钨和铜丝靶后方获得了电子束团,测量了束团束斑、电荷量和能谱。铜丝靶单发实验收集到的电子束团总电荷量可达3 nC,能量分布在0~240 keV区间内,能谱在100 keV附近呈现峰值。提出了微波压缩方案,设计了2腔微波聚束腔,利用ASTRA对微波腔压缩过程进行了模拟计算。结果显示,可以将电荷量1 nC、长度55 ps的束团压缩至27 ps,满足后续微波加速器对电子源的要求。
电子束 激光脉冲 金属丝 束团压缩 electron beam laser pulse metal wire bunch compression 
强激光与粒子束
2021, 33(9): 094003
作者单位
摘要
1 太原理工大学信息与计算机学院, 山西 晋中 030600
2 北德克萨斯州大学计算机系, 美国 德克萨斯州 丹顿市 76201
当前主流的眼底视网膜血管分割方法存在细微血管细粒度特征很难采集和细节容易丢失的问题。为解决这一问题,设计了一种改进U-Net模型算法,该算法将U-Net上下采样中的原始卷积层改为二次循环残差卷积层,提升了特征的使用效率;在解码部分引入多通道注意力模型,改善了低对比度下细小血管的分割效果。该算法在DRIVE (Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)两个数据库的准确率分别为96.89%和97.96%,敏感度分别为80.28%和82.27%,AUC(Area Under Curve)性能分别为98.41%和98.65%,较现有的先进算法有一定的提升。本文所提算法能有效提高眼底图像细微血管分割准确率。
图像处理 视网膜血管 U-Net 循环残差网络 注意力机制 
光学学报
2020, 40(12): 1210001
Xulei Ge 1,2,3Xiaohui Yuan 2,3,*Yuan Fang 2,3Wenqing Wei 2,3[ ... ]Jie Zhang 2,3
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2 Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
4 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
The temporal profiles of high-power short-pulse lasers reflected from self-induced plasma mirrors (PMs) were measured with high temporal resolution in the sub-picosecond window. The leading front shape of the laser pulse is found to depend sensitively on the laser fluence on the PM surface. Spectral modulation plays a key role in pulse profile shaping. Our findings will extend our knowledge on properly using PMs.
320.5540 Pulse shaping 320.7080 Ultrafast devices 
Chinese Optics Letters
2018, 16(10): 103202
Author Affiliations
Abstract
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Astronomy, Beijing Normal University, Beijing 100875, China
4 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
5 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
6 INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
7 Shanghai Institute of Laser Plasma, Shanghai 201800, China
8 Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
9 National Laboratory on High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
10 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
11 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
collisionless shock electromagnetic field high power lasers laboratory astrophysics 
High Power Laser Science and Engineering
2018, 6(3): 03000e45
Xulei Ge 1,2,3Yuan Fang 2,3Su Yang 2,3Wenqing Wei 2,3[ ... ]Jie Zhang 2,3
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2 Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
The femtosecond laser pulses reflected from the self-induced plasma mirror (PM) surface are characterized. More than two orders of magnitude improvement on intensity contrast both in nanosecond and picosecond temporal scales are measured. The far-field distribution, i.e., focusability, is measured to degrade in comparison with that without using a PM. Experiments on proton accelerations are performed to test the effect of the balance between degraded focusability and increased reflectivity. Our results show that PM is an effective and robust device to improve laser contrast for applications.
320.5540 Pulse shaping 320.7080 Ultrafast devices 
Chinese Optics Letters
2018, 16(1): 013201
Jian Gao 1,2Feng Liu 1,2,*Xulei Ge 1,2,3Yanqing Deng 1,2,4[ ... ]Jie Zhang 1,2
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
3 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
4 College of Science, National University of Defense Technology, Changsha 410073, China
5 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
The influence of laser temporal contrast on high-order harmonic generation from intense laser interactions with solid-density plasma surfaces is experimentally studied. A switchable plasma mirror system is set up to improve the contrast by two orders of magnitude at 10 ps prior to the main peak. By using the plasma mirror and tuning the prepulse, the dependence of high-order harmonic generation on laser contrast is investigated. Harmonics up to the 21st order via the mechanism of coherent wake emission are observed only when the targets are irradiated by high contrast laser pulses by applying the plasma mirror.
190.2620 Harmonic generation and mixing 240.4350 Nonlinear optics at surfaces 
Chinese Optics Letters
2017, 15(8): 081902

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!